skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herrera, Yosef"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electronic information and optical properties coupled with the Quantum Theory of Atoms in Molecules (QTAIM) and Electron Localization Function (ELF) analyses are used to elucidate the erbium (Er+3) and praseodymium (Pr+3) intraband f–f transitions in the lithium tantalate (LiTaO3) doped and co-doped configurations and the metal-oxygen bonding. The generalized gradient approximation calculations show that the Er+3- and Pr+3-4f bands appear closer to the conduction band bottom for Er+3 and Pr+3 at the Li sites and to the valance band top for Er+3 at the Ta sites. However, the corresponding hybrid functional calculations for the dopants at the Li site show that the Er+3 and Pr+3-4f bands spread in energy, which agrees with the observed intraband f–f transitions from the optical properties calculations. QTAIM shows that Ta-, Er+3-, and Pr+3-O bonding is incipient covalent for all configurations of this work. The absence of ELF in the metal-O regions aligns with QTAIM on the lack of strong covalent bonding in these compounds. This complementary insight highlights how weakly interacting metal-O atoms lead to delocalized electron density, a feature that influences the physical, electronic, and chemical behavior of the LiTaO3. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026